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Abstract

Linear thermoelastic problems are solved for the thermal stress and
displacement fields in an elastic solid of infinite extent weakened by a
plane of discontinuity or crack occupying the space outside of a circular .
region. The faces of the crack ére heated by maintaining them at certain
temperature and/or by some prescribed heat flux the distributions of which
are such that their magnitudes diminish at infinity. Special emphasis is
given to the case when the circular region surrounded by the external crack
is insulated from heat flow. The solution to this thermal stress problem
may be combined with that of applying appropriate tractions to the crack
faces, thus providing the necessary ingredients for extending the Dugdale
hypothesis to thermally-stressed bodies containing cracks. More specifically,

the results of the analysis permit an estimate of the plastic zone size and

initiation in ductile materials.
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Introduction

Previous efforts on steady-state thermoelastic problems have been
focused mainly on problems dealing with bars, plates and cylinders. A complete
account of these developments is clearly beyond the scope of this article. On
the other hand, systematic study of the effect of plane cracks on thermal
stresses set up in an elastic solid has a quite recent history started in the
past few years.

Beginning with the work of Olesiak and Sneddon [1]4, the method of dual
integral equations in the Hankel transforms was used to determine the distri-
bution of temperature and stress in a solid containing a penny-shaped crack
across whose surfaces there is a prescribéd flux of heat. By having the same
thermal conditions on the upper and lower faces of the crack, the problem was
reduced to one of specifying certain mixed boundary conditions on a semi-~
infinite solid. The case of heat supplied antisymmetrically with respect to
the crack plane was treated by Florence and Goodier [2]. Using potential
function theory, Kassir and Sih [3] presented explicit solutions to a class
of tﬁree-dimensional thermal stress problems with an elliptical crack whose
faces are thermally disturbed by both symmetric and antisymmetric temperatures
and Jor temperature gradients. Their results include those in [1,2] as limiting
cases. Further, Kassir and Sih [3] showed that for any small region around
the outer boundary of an elliptically-shaped crack the thermal stresses and
displacements correspond to a situation which is locally one of plane strain
as derived earlier by Sih [4] ﬁsing the equations of two-dimensional thermo-
elasticity.

This investigation presents an analysis of the steady-state axisymmetric

thermoelastic problem concerning two semi-infinite solids joined over a

4Numbers in brackets designate References at end of paper.
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circular region. The unconneéted portion of the solids may be regarded as
an external penny-shaped crack, Thermal boundary conditions are standard

in that the temperature or heat flux must be known at the surfaces of the
crack in such a way that the temperature distribution in the solid is
determined uniquely. With this temperature distribution kmown, introduction
of a thermoelastic potential reduces the problem to one in axisymmetric
isothermal elasticity with body forces.

For definiteness sake, the circular region connecting the two semi-~
infinite solids is assumed to be insulated5 from heat flow, while the crack
surface is heated by temperature T(r) that may vary as a function of the
radial distance r from the center of the circular region of unit radius.

Two special cases are considered in detail. In the first case, T(r) is a
constant prescribed over an annulus region surrounding the circle r = 1. In
the second case, it is assumed that the function T(r) varies according to r =,
where n > 1. The problem in which the crack surface is heated by some flux

of heat may be solved in the same fashion.

Another objective of this work is to calculate the stress-intensity
factors [S] the critical values of which contéol the onset of crack propaga-
tion in brittle materials. For ductile materials, the Dugdale hypothesis [6]
may be adopted by assuming that the plastic zone developed at the crack
border can be approximated by a very thin layer in the form of a ring. An
estimate of the plastic energy dissipation of the crack can also be obtained

from the results presented in this paper.

Axisymmetric Equations of Thermoelasticity

Let an external penny-shaped crack be situated in the plane z = 0

5No additional difficulties are encountered if heat is allowed to flow through
the circular region. Alterations in the thermal boundary conditions are °
discussed in the Appendix,
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and be opened out by the application of heat to its surfaces such that the
deformation is symmetrical about the z-axis. Referring to cylindrical

coordinates (r,8,2), the stress components are independent of the angle 6,

and all derivatives with respect to © vanish. The components of the displace-

ment vector u for axially symmetrical deformation are (u,o,w), and the non-

vanishing components of the stress tensor J will be denoted by 0;, Oé, Oé

and T .
rz

If the heat flux vector does not depend on the components of strain,

then the displacement equations of equilibrium become
2

2
U U u. 3 =L W o
2((-\))(;';3_ + JF;'; - )-l‘(l ) 35 + ovoy = 204X 'aI_ )

1
(‘z")( %a’w‘)"'za")aw 2‘(9—E'+%)=2.(\+0)0(9;:%/; w

v PR

and can be solved independently from the equation of steady-state heat

ar1

conduction
2
vV T&gr =0, (2)

Here, T is the temperature increase referred to some reference state and

v stands for

2 Bt | 2 22
- 2 L2 4
v e ¢ or 222

In egs. (1), a is fhe coefficient of linear expansion and V) is Poisson's
ratio of the material.

When both the mechanical and thermal properties of the solid are
assumed to be isotropic and homogeneous, the stress components may be
obtained from the displacement components by means of the Duhamel-Neumann

law, which in dyadic notation takes the form

: 2
= ——— -0 .u—
/u.{v% + UV + n-zv[ Vel = (49) ol T ] L} , (3)
in which p is the shear modulus, I the unit dyad and V the usual del

operator,
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Kassir and Sih [3]6 have shown that the solution of egs. (1) may be
represented in terms of certain harmonic functions for problems involving
surfaces of discontinuities or plane cracks. Suppose that the displacements

and stresses induced by T are of the symmetric pattern, then
w, b. 05, (7\5, ; even in %
w, Tr}, ; odd n % (%)
Adopting egs. (12) in [3] to the axisymmetric problem under consideration,

the displacements u and w can be expressed in terms of two harmonic functions

f(r,z) and Q(r,z):

Q oF
=(("Z’>) J;,Daral T
(5)
W = —-2(-v) 5:% + })}
where
F = + %é; ’

and

szga(r,}) =0 , V"_Q(r,é,) =0 ,

The thermoelastic potential Q(r,z) can be determined from the temperature

field as
2L

%

and can be associated with the Boussinesq logarithmic potential for a disk

+V
= $(B)a Ty | “

whose boundary conforms to that of a crack. At infinity, although the
potential Q(r,2z) is permitted to become unbounded, the regularity condition
of the displacement vector requires Q(r,z) to have bounded derivatives of
all orders with respect to r and z. The limits of integration appearing in

the first of eqs. (5) were chosen to ensure the boundness of u as z - .

The harmonic-function representation in [3] was developed originally for .
solving non-axially symmetric problems of plane cracks.

-5
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Now, substituting egs. (5) into (3) yield the following expressions for the

stressest —1:& E& ’ JUN 7_‘:
2 d > oL 2 F
_g-"- = (1-29) F2 ~ 2V 732 - J} sr293 — 2 =z + arz?
o | 9 % | da,Q oQ )
20 = 0-*”7:;'?- - ;-é‘l*?f} A TS S
& >F *F
2 = - ’a-" + 5! )}z ? (7)

Considerations of the eveness and oddness of the displacements and
stresses as stated in eqs. (&) together with the prescribed thermal conditions
on the crack surfaces reduce the crack problem to one of an elastic half-
space with mixed boundary conditions on the plane z = O, In view of symmetry,
the plane z = O must be free from the shearing stress 7 and w(r,o) must
vanish inside the circular region r £ 1. Without loss in generality, the
crack surfaces may be assumed to be free from mechanical loads, i.e., 0; =0
for r > 1 and z = Oi. The case when the external penny-shaped crack is
squected to surface tractions has already been treated by Lowengrub and
Sneddon [7]7, and will not be repeated here. Thus, the requisite thermal
and elastic boundary conditions on the plane z = O are taken to be

%=o , otre <l
T=Te), r>1,

!

(8)
and
W=0 , ocer &,
6p=0 , >l (9)
T;} =0, O£ < oo
7

In what follows, their solution [73 will be added onto that obtained in
this paper for computing the size of the plastic zone at the crack boundary.

-6 -
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It should be mentioned that the antisymmetric problem in which

U, 6,6, 6, 5 odd i3
W, T'Z" ; <ven l'n.} (10)

may also be formulated by following the procedure of Kassir and Sih [3].

Hence, the two problems, one symmetric and the other antisymmetric, may

be superimposed to yield the solution to problems of the infinite solid

with any thermal conditions specified on the external penny-shaped crack.

Steady-State Temperature Distribution

For a semi-infinite solid z > O that is free from disturbance at

infinity, the appropriate solution of eq. (2) is [1]

(=]

T3 = go A e

¥
J'o(rs)c{s, }.},o .
(11)
In eq. (11), Jo is the zero order Bessel function of the first kind and
A(s) is a function of the parameter s to be determined from the thermal

boundary conditions in egs. (8) with T(r) = T, g(r), where T, is a constant.

The function g(r) is to be bounded at infinity and the integral

o0
{ a() de
]
is to be absolutely convergent.
With the help of eq. (11), the conditions in egs. (8) lead to the
dual integral equations

[ sAw) T,te)ds =0, o¢r<l

oo (12)
[, Ae Tl ds = T, 96, r >

which determine the only unknown A(s). The solution of these equations has

been given by many previous authors8 and can be found in the open literature:

CSee for example [8].
-7 -
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Ny (13)

Making use of the relation
[, (st ( 2 3 sin(st)
4 (5t) = st/ ’

and integrating eq. (13) by parts render

A(s)=——T{s (s)j " “”’“{" +sf‘:os(stJHt rﬂ)—d—"]olt}

For convenience, introduce the function

ra(r)dr

Jr—tt (14)

so that, after a little manipulation, A(s) becomes

) = £ T, ft

[ -]

A = - f Sin(st) ) dt
! (15)

where ¢°(t) = dp/dt. Eq. (15) may now be inserted into eq. (11) to give the

temperature distribution

o0

r'}) - - Ko e—s?j-;(rS)dS [ I, Sz;L(s‘{:) ‘#)(t) 6{‘6] ’ 3, 2o | (16)

For the purpose of setting up the mechanical boundary conditions in the
subsequent work, it suffices to compute the temperature on the plane z = O.
Hence, after a permissible reversal of the order of the integrations with

respect to s and t, and upon using the identity

-L
o (=) * , r<t<eo
fo s (st) J, (rs) ds =

o R ot <r
it is found that
oo )
Pl) dt
Ttro) = - oérel
) gl Vt=rz 7 . (17)

angd
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Ttr,0) = j qu dt r > (18)

in which ¢’(t) can be calculated from eq. (14) once g(r) is given. Two
examples of interest will be cited.

(1) Consider the problem of heating up the faces of an external
c¢ircular crack over a ring whose inner and outer radii are unity and a,
respectively. In this case, g(r) takes the form

{ I, a>r

a(r) = H@-n =

[
o 21 (19)

"o, acr
where H(r) represents the Heaviside step function. A straightforward
calculation gives

&) = 2T, Jatez Ha-t) , t<a

and hence T(r,o) may be found from eqs. (17). The result is

23 \
e =l f o z
_F(ro)-;_’rf tdt =-—T Sin (%:'lr"") , 0&r<l (20)

P {@E )ty T
and the condition T(r,o0) = To for r > 1 can be verified from eq. (18).

(2) If the temperature variation on the crack faces is such that

-N '

then eq. (14) yields

ORI
¢y L LEmD

VT rZ) ’
where :['(n) is the Gamma function. Putting ¢(t) into eq. (17) and carrying

n >\

out the integration, T(r,o) is obtained:

To (n- 1) P("""L
2{w MZ)

Note that Bx(m,n) is the incomplete Beta function defined by

TYQO)_

-n
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Bx(m,n)=j°1al, (l-v(g.) c{té, 5 Qefm:l >0 Re[ﬂ]>o.
The complete Beta function B(m,n) may be related to the Gamma functions as

[
m-l n-1 M(m) Plr)
S =1

Alternatively, the temperature variation in eq. (22) may also be expressed
in terms of the Gauss Iypergeometric function 2Fl(a,b;c;x) through the known
identity
B, ( L x™.F
m,n) = —= 2T (my, -n 5 lems %)

and hence eq. (22) may also be expressed as

o (&4t
Tr,0) = ;1_?_- ﬁf‘(-;_l,é;—gu;r‘) , 0&rel:ns
T

(23)
When n = 2,4,etc., the hypergeometric function in eq. (23) reduces to
elementary functions?

(a) n = 2.

2

. &
T(o) = —l-;_-"- (1= (-2 , o<£r<|

4
Tro) = %[l- (1+ {;)(n-rﬂ‘], cérc |

Similar expressions of T(r,o0) for other values of n may also be deduced,
but they will not be considered here. For r > 1, the prescribed temperature
distribution of T(r,o0) = Tor-n can be easily recovered by putting ¢(t) into
eq. (18).

Temperature distributions corresponding to other types of thermal

boundary conditions are worked out in the Appendix.

Thermal Stresses and Displacements

It is seen from egs. (5) and (7) that the evaluation of the displace-

- 10 -
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ments and stresses does not warrant an explicit expression of the thermo-
elastic potential @(r,z) with respect to r and z.
First of all, egs. (6) and (11) may be combined to eliminate T(r,z):

Q - e
993’ l(‘*")xjo As) e ?Jo(rs) as , 320 , ()

.from which

A g wd
5—': --?:( )9{'[ A($)€ J',("s)als, }}_O / (25)

is obtained. The arbitrary function of integration may be set to zero, since
3Q/dr must vanish in the limit as z - o, Eq. (25) may be integrated with

respect to z from o to « giving

[~ -4

-9
f 9514 = L (85| LAw e “Teods, 320 (26)

%'71‘ .

Having determined the temperature field T(r,z) or A(s) for various pres-

cribed thermal conditions, it is clear that the quantities
[ -4

al - o2 f 2£2 4

2y’ or’

appearing in egs. (5) and (7) can be calculated in a straightforward manner.

It is now more pertinent to find the unknown harmonic function 3f/dz
from the mechanical boundary éonditions in egs. (9). A quick glance at egs.
(7) reveals that on the plane z = 0 7., Vanishes automatically and the

remaining two conditions in egs. (9) require that

4 . o o&r <l

93, 4

? 2
% . L(E) Teney , 51 (27

7”%1
where

24 ’ o4 o
FIRTE >

-

as }, - ©0

- 11 -
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Taking into account the axisymmetric nature of the thermal loading, 3f/az

may be represented by the Hankel integral

o0 _5?
%%Y‘ = So —é—B(S) e J,)ds, 320 | (28)

By virtue of egs. (27), the function B(s) has to be found from the pair of

simultaneous equations

fo -ls—B(s) J.Gs) ds = © océr<y

P4

o0
(29)
So Bes) T (r9 ds = Jz-(":'_% ) Tty , T

in which T(r) represents the axisymmetric temperature variation prescribed
on the plane z = O. Lowengrub and Sneddon [8] and others have shown that the

satisfaction of egs. (29) can be achieved by expressing B(s) in terms of the

function
W a (T d
Vi) = (T;—)‘-‘,T‘St 7—7'2—7;51 ) (30)
through an integral of the form
b
B(s) = S jl Qpb(‘t) cos <$‘t) dt . (31)

With a knowledge of B(s), the problem of determining the displacements and
stresses in the elastic solid is reduced to quadrature.
For the purpose of finding the displacements on the crack surfaces,

eq. (31) is inserted into eq. (28):

TRy ¥

a1 [ ]

= >

>3 , ‘?P(f) Cos(st)alt] e J(rs)ds , 420 (32)
Upon differentiation and integration with respect to the variables r and

z, respectively, Gﬂ/ar is derived:

-12 -
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od o0
%—/& = So “, Y cos(st)dt e-S?J.(rsMs) 3220 , (33)
The condition 9f/dr ~ o0 as z - « has been enforced by neglecting the
arbitrary function of r, which arises from the process of integration.
Setting z = O and applying the identities
i
o (r'-t2) z) r>t

‘go cos(st) J’;(rs)as =
e , r<+t

and

o0 -l
N
[ cos(st) Jrrds « / , 7F

]

4
1«‘"[!%(&-&) ], ret

eqs. (32) and (33) may be written as

-
j‘ @i‘ii’: , >

(34)
o , 0&r<|
and -
n
Y J Liwwdt , r>
or - - .
—L—jl [1-tE® "l dt | oer<l 2

Hence, eqs. (26), (34) and (35) may be substituted into egs. (5) and the

resulting expressions for the displacements on the crack plane are

o0 r
{3)«:( L -—';A(s; T‘(rs)ds + (t~2\3)7'.- Sl@(‘t)dt , F>0

UCr,0) = é_-(‘\ 5

r
W(r,0> a - 2(1=v) J qp_(_"i)_ﬁlf

| 6)
e >

-13 -
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Similarly, the displacements u and w for points inside the circular region

of unit radius can be found:

o6 e -4
U(r;0) = -71_(:{%)«5-;-/\@) T.(reyds + (o) & L[l-t({"— ® ) dttydt ) osre

wino) = o , 0 £r«l (37)
- The functions A(s) and Y(t) in the above expressions are defined by egs.
(15) and (30), respectively.
Of particular intgrest is the stress component: Gé from which the
crack-border stress~intensity factor formula may be extracted. This factor
has been known to control the instability behavior of cracks in the theory

of brittle fracture [5]. To this end, egs. (6) and (32) are substituted into

the third of eqs. (7) and hence for z = 0 0, becomes

6 2(60) = 2/:.{ [5 ’l.PLt)cos(st)Jt] Jo(rs)ds - "‘(Ho)o(T( )}

Therefore, it is not difficult to show that

Yl " Yedt L 0sr<
Gede-zp | 2 +f, TR 4 BaT0) oerer

and 0;(r,o) = 0 for r > 1. Notice that only the leading term in eq. (38)
contributes to the singular behavior of Oé, while the other two expressions

are bounded as r - 1., Thus, by letting € =1 - r and €~ o, O; becomes

2 Wy .

where terms of order higher than 6-1/2 have been dropped. The coefficient

of l/JEZ&, say kl’ is the crack-border stress-intensity factor for the

opening mode of crack extension, i.e.,

e, = -2p W) = -(“o)zﬁ—j 7\;—%—?7 : (39)

By the same procedure, the other stress components may also be

- 14 -
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expressed in terms of T(r), the prescribed temperature distribution on the

crack.

External Crack Around Insulated Circular Region

To fix ideas, the displacements and stresses on the plane z = 0
corresponding to the temperature distribution discussed earlier may be
expressed explicitly in terms of ™r) = ‘I‘o g{r). Appropriate elimination of

A(s) and Y(t) in egs. (36) and (37) gives the displacement field

(I-I.T)j '2_52_’_'2 +z(.-o)j [‘_ ][[ 7%‘_‘_'/_7:‘714

7 tz OSF([
d\aTe .
ur0) = ((+ )?{ITTF' o0 r (40)
149247 | 560 134y
J.\)‘?—z_,—, +Zl\)j'f$t- \I_V_._é]o(t)r’w

and
[ fo] oL rdld
()T, r oo
W(no) = - 2822 L, palpdny dt (41)
= M[gl A s

Eq. (30) may be combined with eq. (38) to put the normal stress component

7\7%%4'2 , O0%rel
ExT,

G r>
(=) \ o , r>) (k2)

in the form

6}(‘-; 0) ==

where E is Young's modulus of elasticity. In deriving eq. (42), it is
interesting to note that the two non-singular terms in eq. (38) cancelled
each other.

Let g(r) in egs. (40) through (42) be given by egs. (19) and (21).

The calculation of u, w and O'z involves a considerable amount of detailed

- 15 -
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work which will be omitted. The finzl results are:

(1) Step function.

In this case, the displacement component in the radial direction is

. =, 0% i LI P LA '.l‘
a1 (I—J:?‘)Hl-o)af‘fsm |('a-;,.?)"" (l~£;)$l'l (':—r.,;’z) J oére|

3 T, . - -,
u(go)g(L’f_J)".“_; =1 +(-)a?(sin '(E-) ~ sin l(-‘:—L) +L );—i—,_ ], \¢rea

(43)

C-le %
Ia=l + (- a* sin (aaz ), roa

and the normal displacement component is given by

o Oo<Lr &

Wiso) = %ngrzi SEG D ~EGa]  i<rea

BT -£&a)-(-5)(KED-KE )] ryq @

r’2

in which E(E,al) and K(%,az) are the incomplete elliptic integrals 6f the

second and first kind, respectively, where

‘- St | i
o(|= s;nl(—“:) R 044'42- and 0(1-.-. Sin (Z) 0<°(z< z

When a, or a, = ©/2, E and K become the complete elliptic integrals. The
normal stress component is

a* | osr el
EOCTO (l_rl)-%} ’

(-2)T v \ o r> |

’

'(’Té,(t‘,o) = - (45)

and it follows that

/k,-' - gﬂi\la"—l .

(-0 T (46)

(2) Radial decay.
If the temperature on the crack varies in accordance with eq. (21),

then for n > 2
- 16 =
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2 2-n .
. ) O el BalZ-1,5)] sere
Ulro) = -L(.'.'.‘l). 4 r'("'- ) : )

2 VT e @) - 'um
2 l+2—(r‘)—:\)—2— (l*»rzn) , r>|

and forn>1

j o, oL rel
n .
Wero) = - (u+o>oj;l', r‘i-,: -1) "
zir (% 1!‘ 8 et (é-, l-g_—) r>\ (48)

I P4

As before, the incomplete Beta function Bx(m,n) in egs. (47) and (48) may be

related to the hypergeometric function as follows:

ueo) L (L= TE S f,‘(_ Dffrm 2D [1-f @35 25 P 0r< 4002

and

T P L ;—? 2
W(‘;O)’:--'(\*\))dlor(z Z) r—-i F(é - r—'\)) r>|; n>l

n
)Z)

NGEEES) O (50)

For g(r) = r > and n > 1, eq. (42) reduces to
_....J..
r ES.___ , 0%

N

4 z n
G, (o) = - E__‘:‘Ie. (I-¢*) * rez?
¢ T o rsy (51)

Therefore, the }'L_L-factor is obtaineds

n_L
/k=_6o¢T°P(Z z)) N> 52
' 2 (-7 M) 2

To recapitulate, the stress-intensity factors given in egs. (46) and
(52) can be associated with the forces which motivate and produce crack
extension owing to thermal disturbances. The critical values of k, for a

1
particular material can usually be measured experimentally. Moreover, if the
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material undergoes plastic yielding at the crack border, where the thermal
stresses are exceedingly high, there will be a localized zone of plésticity
surrounding the periphery of the crack. The size of this plastic zone for an

external penny-shaped crack will be estimated in the next section.

Thermal Plastic Zone Size

An ideal elastic-plastic model for the plane extension problem of a
straight crack in a thin sheet has been proposed by Dugdale [6]. This model
will be adopted to estimate the extent of plastic yielding at the edge 6f an
external circular crack. The material near the crack is assumed to flow after
yielding at a constant tensile stress 9, and the plastic zone is confined to
a thin layer of width w around the uncracked portion of the plane z = Q. The
parameter w will be determined from the finiteness condition of 0; at the
leading edge of the plastic zone.

Mathematically, the solid may be assumed to deform elastically under
the action of thermal loading together with a mechanical compressive stress,
-qo, distributed over the surface of a ring of inner radius r = ; and outer
radius r = 1 + w. For this problen, Oé can be obtained by superimposing the
solution of Lowengrub and Sneddon [7] onto that of eq. (42), The normal stress

component for the combined thermal and mechanical problem is
00

E _4_'&_& 77»(2)47_*_41@—] +_E__I°°"L:Lt)°‘t,osr4|
{

s

6. Feet (0T it 1+ Y ) (e
g =
¢ & (53)
—A) , r>l
where o
(36 dg
¢l(+) = 'ﬂ'/l. S'L' ;3,_ Es J
and

by = = §o Hlw =r)

Since Gz is to be bounded at r = 1, the singular terms in eq. (53) must be

- 18 -
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removed by taking

447 S g d
2T, | ’7_L_’1 - =2 ;—g\f‘i‘.“Tf

Setting 2p(1+V) = E and performlng the integration with respect to 2 lead
to the equation
(
EdTS 73‘—2_-)—{2 ~2(-0) g Jwlwz)
- (54)
for evaluating the plastic zone size w. For illustration, formulas for w

are worked out for the two previously mentioned examples.

(1) If g(r) = H(1+$ -r), then eq. (54) may be integrated and solved for

L
w= -1+ [l+§(@+z)'r"]" (55)

The quantity
Ed T

7V = - 2(\- 9)ﬁ}o

may be interpretated as the ratio of the applied thermal stress to the yield

stress of the material qo, and g{in eq. (55) is the width of the region
heated by the constant temperature To. A plot of w versus Y for various
value; of § are shown in Fig. 1. The curves are similar in trend to that
found by Dugdale [6] for the two-dimensional problem of an isothermal crack.

(2) For glr) = r ® with n > 1, the plastic zone size is found to be

P(——L)
Q):—\+{\+3£_—[ f'() J} (56)

whose variations with 7 for different values of n are plotted in Fig. 2.
As to be expected, the size of the plastic zone increases as the temperature

To is raised.

Concluding Remarks

The linear thermoelastic problem of an elastic solid containing an

-19 -
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external penny-shaped crack has been formulated and solved, The temperature
and/or heat flux can be applied either symmetrically or antisymmetrically
with respect to the plane in which the crack occupies. The solution offers
the possibility of a theory of brittle fracture for crack propagation caused
by heating. This can be verified by experimentally measuring the critical
values of the stress-intensity factors as proposed earlier.

The obtained displacement field also permits an evaluation of the
plastic energy dissipation for cracking induced by thermal stresses. This,

however, will be treated separately in another paper.
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APPENDIX
Temperature fields pertaining to thermal boundary conditions not
covered in the text will be presented below.
Case A. Instead of applying temperature to the crack, heat flux may
be specified on the flat surfaces r > 1 and z = 0%, The distribution of

temperature that satisfies the set of conditions

T O, osrc|

——

?
Q(r‘> , rsi (57)

¥

is given by

T30 = ”L [ h Qi 7(37)4716_53/1,06) ds , 320 | (58

Consider two special cases of Q(r):
(1) Suppose that Q(r) = Qo H(a-r), where Qo is a constant. Then, it can

be shown that for z = 0
f Ee) , o<r«

—_ 2Q,
l(r 0) = . (59)
) K IF[K({'Q = (l"‘{:—z) E(‘l})] , [ &r & =0

and

JE(—- oLr<a

Ter,0) = - (60)

I—[K("')-(l- 2y ED] | acree
The complete elliptical integrals of the first and second kind are denoted
by K and E.

(2) In the case, when Q(r) = Qo r % with n > 1, the temperature field
is

LL-5s0056%) , ocrsi 3 n>|

Téro) < § - , (61)

]
L j-n- o_L _n. n,
(z_n)p[sr;.(é)za' X L3 = FCZ 2)( z l, 2—2 . I)]) P}l; i<n<2
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The second of egs. (61) is valid only for values of n between i and 2 and
hence it is somewhat limited in application.
Case B. Another possible case is when the uncracked region o <r <1

and z = 0 is permitted to conduct heat such that

o] ogrl

P
T =
To k() , > | (62)

and thus
oo

o0 . ~Si/
T(r,g.>=“n§ (f"z%tv) Tepdp]se Js)ds | 230
1]
(63)
(1) For h(r) = H(a-r), eq. (63) is expressible in terms of the

Lipschitz~Hankel type of integrals

- > -5
Ty3) =T, [a.so e 53’j.(as) J (9 ds —L e 3'3-'(5) :To(rs)ds] , 320

These integrals have been evaluated and tabulated numerically in fa].

(2) If b(r) = r ® and n > 1, the temperature field becomes
. = » Y d
Ting) = T‘,f [n I, (ms) - J&]e J,(o)ds, %20 (65)
o
where

I\ tm,s) = f‘ E‘m:ﬂcsgwg .

Titles of Figures

Fig. 1 . Widths of plastic zone for constant heating.

Fig. 2. Widths of plastic zone for temperature decaying radially.
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Normalized plastic zone width, w

Fig. 1. Widths of plastic zone for constant heating.
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Fig. 2. Widths of plastic zone for temperature decaying radially.
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